

Outline

- Who We Are
- Project Overview
- Testing of Three Floating Wind Turbine Platforms
- Concrete Semi-submersible Technology (VolturnUS)
- Project Status
- Next Steps

Bringing Advanced Materials into Construction

Our Partners and Clients:

Over \$130 Million R&D

Major Funding Agencies:

Wind Blade Research and Structural Testing

National Level Test Facility: Wind Wave (W²) Ocean Engineering Laboratory Quality Wind and Wave Scaling

Next-gen Scale Turbine Modeling

- Multi-scale offshore wind turbine capable of simulating a variety of commercial turbines of varying sizes (6-15MW+).
- Individual or collective blade pitch control.
- Carbon fiber blades
- Motor/controls mounted in hull.
- Light-weight tower top mass
- 3 m rotor diameter.

Ocean Renewable Energy Conference XIII September 18-19, 2018

Towing System

Model Construction Equipment

5-axis CNC (4'x5'x8')

3D Printing (3'x3'x2')

UMaine/ DOE Project Overview

Started 10 years ago!

- Demonstrate two x 6MW floating concrete turbines by 2021-2022
- VolturnUS floating concrete tech:
 - Lends itself to serial production
 - LCOE for utility-scale <7c/kWh
- Northeast US dense population, high electricity costs and expanding electricity demand
- 55 Million in Northeast in an area no bigger than Texas!
- \$50.7M DOE Advanced Offshore Wind Technology
 Demonstration Program

 $2 \times 6MW = 12 MW$

350t

500 ft rotor.

Key Accomplishments

- VolturnUS concrete hull technologyreduced hull construction costs in US
- Site Control
- PPA Term Sheet 23c/kWh x 20 years
- ABS positive review of hull 100% FEED
- Successful 1:8 scale pilot deployment

Latitude and Longitude of Site

 Northern Boundary
 43° 43' 18.231"

 Eastern Boundary
 69° 20' 16.759"

 Southern Boundary
 43° 42' 15.436"

 Western Boundary
 69° 17' 39.544"

2021 Construction Completed

University of Maine Deepwater
Offshore Wind Test Site

2010- Testing of Three Floating Wind Turbine Platforms

3 Hulls, 60 Metocean Conditions, largest floating offshore wind data set made public.

UMaine Concrete Patented Hull Technology Tap Existing US Concrete Infrastructure. Domestic Production Low-cost 1 Hull per Week Serial Production

PRECAST BRIDGE CONSTRUCTION SARAH MILDRED LONG BRIDGE - KITTERY, ME ON-SITE PRECAST TOWER SECTIONS

Critical Technical Milestones Completed

- 1:8 Scale Prototype
- 1:50 Scale Model Tests of 100% FEED
- ¼ Scale Fabrication Effort
- ABS 100% FEED Approval

VolturnUS 1:8 Launch 1,600 Attended on May 31, 2013

Lessons from VolturnUS 1:8 Pilot

Validation of Technology Performance

Pilot saw 40 scaled 50 to 500-year return period storms:

- √ Max nacelle acceleration < 0.2g
 </p>
- √ Max heel angle < 7degrees
 </p>

1:50 Scale Test of 6MW Hull

UMaine W2 Wave-Wind Basin

Rotor Torque

Translational Accelerations

> Tower base bending moment

op beam axial loads

Fairlead Mooring Load Cells

Rotor Speed

6-DOF Tower-top forces and moment

Fore-aft tower base shear force and bending moment

Ocean Renewable Energy Conference XIII September 18-19, 2018

1:50 Scale Testing at UMaine

Confirmation of Design 50 year Extreme Waves with Turbine Operating

1/4 Scale Mock Construction- 30 ton Concrete Structure Fatigue and Durability Testing

ABS Hull 100% FEED Review

- ABS has reviewed 28 design reports and data and found 100% Hull FEED compliant
- Primary Standard

ABS Guide for Building

and Classing Floating

Offshore Wind Turbine Installations

Ocean Renewable Energy Conference XIII September 18-19, 2018

Mooring and Anchor Layout Determined Based on Locations of Deep Sediment Deposits

Over 16 Years of Metocean Data

The state of the s

Metocean Buoy

Metocean Buoy

- Waves
- Wind speeds
- Current from surface to sea floor
- Temp, pressure, and visibility
- Scatter plots for fatigue design

Land-based LiDAR on Monhegan

- Deployed March 18, 2014
- Verify AWS atmospheric models

DeepCLiDAR

- Wind cube mounted on UMaine buoy
- Deployed in 2014-2015 for further site characterization

5-year Instrumentation and Monitoring Plan

Key Objectives of Testing Plan:

- FOWT performance and design validation to support third-party certification efforts
- Validation of meteorological and ocean environments used in the design process
- FOWT numerical coupled model validation at a commercial scale
- System health monitoring to support operations and maintenance
- Support environmental monitoring as needed for permitting

Ocean Renewable Energy Conference XIII September 18-19, 2018

Pre-Deployment Environmental Studies

Extensive ecological, geotechnical, and cultural studies have been completed and are planned:

– Benthos: 2010-13, 2015

- Fish: 2010-15

Marine Mammals: 2010-15

Birds: 2010-15

– Bats: 2010-13, 2015

Noise and Vibration: 2011, 2013

Electromagnetic Fields: 2011, 2013

- Geophysical: 2010, 2013, 2015

Terrestrial: 2014

Aesthetics/Visual: 2013

- Cultural/Historic: 2010, 2014, 2015

Timeline: New England Aqua Ventus I

- 2019 PPA Contract Finalized and Design Complete
- 2020 All Permits Received
- 2020 Start Construction
- 2021 Construction Completed

Fierce Global Floating Wind Competition

Examples:

- 2016 France: three floating demonstration projects,
 each in the 24 MW range. Another project underway.
- 2016 Portugal: approved 25 MW project
- 2018 Scotland: 30 MW project
- 2017 Japan: to deploy two additional demo hulls (in addition to 3 turbines off Fukushima) – 500GW potential.
- Germany \$1Billion annual funding for offshore wind
 R&D- big focus on floating

