

OCEAN RENEWABLE ENERGY CONFERENCE SEPTEMBER 19, 2018

PELASTAR TLP TECHNOLOGY UPDATE

GLOSTEN INTRODUCTION

Summary:

- Established 1958
- 100 Employees
- Offices in Seattle, Boston, and New Bedford
- Naval Architecture, Marine Engineering and Ocean Engineering

Complete Vessel and Platform Design: Concept to Production Detailing

Business Sectors:

- Marine Construction
- Marine Energy (Oil & Gas)
- Oceanographic Research Vessels
- Ferries
- Aerospace and Special Projects
- Marine Renewable Energy and PelaStar

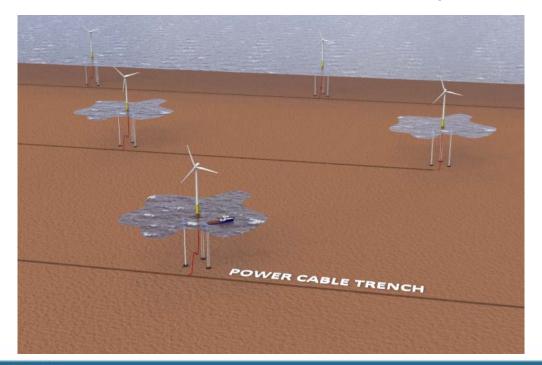
PELASTAR TECHNOLOGY OVERVIEW

- PelaStar is the most technically-advanced FOWT TLP
- Centralized buoyancy, 5-arm, synthetic tendon design is optimal, cost-effective, and robust
- Received more 3rd party review than any other TLP concept
- Lowest utility scale cost of energy among all floating solutions
- Full-scale technology demonstration is our next step

Engineered for optimized deep-water commercial cost of energy

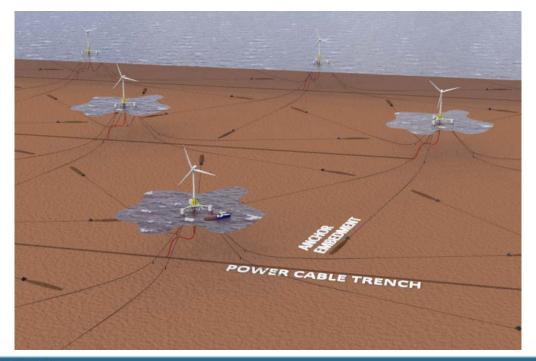
ADVANCED TENDON TECHNOLOGY

Synthetic Cable Tendons solve many of the traditional TLP mooring and installation challenges


- Minimize need to adjust tendon tensions to balance uneven loads at installation.
- Neutral buoyancy reduces overall system mass
- Tolerate slack-line events in extreme conditions.

MOORING AND ANCHORING

PelaStar TLP


- Vertical Tendons
- Compact footprint
- Minimal impact on benthic ecology
- Minimal impact on fishing

MOORING AND ANCHORING

Catenary Spread Moorings

- Extensive footprint
- Significant seabed impact

ETI DEMO PROJECT FEED STUDY TEAM

Engineering, Integration, Cost and Management

Shipyard/ **Fabricator** Various – to suit supply chain requirements

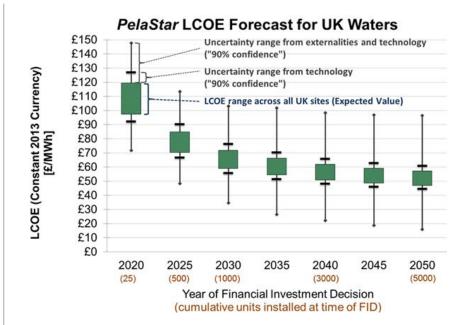
The Alstom Haliade 150, 6MW turbine is the **ALSTOM** first turbine to be integrated with the PelaStar foundation

Operations and Maintenance (O&M)

Anchor Fab and Installation

Project Certification

THE TECHNOLOGY SOLUTION


- TRL 5: Engineering-intensive FEED-level design with 6.0 MW turbine
- DNV GL approved Basis of Design and has reviewed the FEED-level design.
- 1:50 scale model tests performed with software validation reviewed and studied by DNV GL. Results co-published with DNV GL.
- Program total of USD 12 mil
 - USD 9 mil in engineering hours.

PELASTAR COST

Optimized for low commercial LCOE: PelaStar has the lowest primary steel weight for material and construction costs.

- Full cost analysis is available
- Recent reductions in bottom-fixed costs will transfer to floating wind and lower the floating wind baseline cost estimates further

2015 forecast – Updates will reflect current industry progress and wind farm development timescales.`

TECHNOLOGY DEVELOPMENT PARTERNS

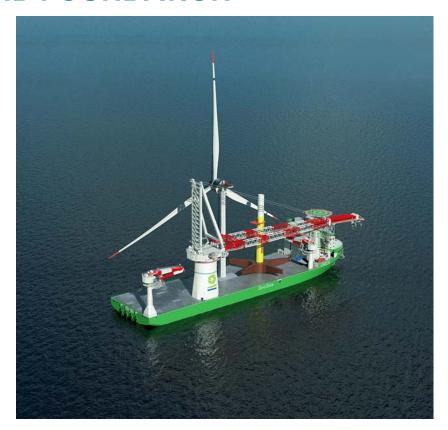
Turbine Controls

Tendon Technology

Coupled Analysis

INDUSTRIALIZED INSTALLATION METHOD

UK Patent Awarded - US Patent Imminent **Quayside Assembly** Installation Barge Engaged Foundation Pressed to Barge **Tow Out** PelaStar Support Barge Long-term utility-scale installation and deployment method utilizes a dedicated installation barge. **Transit to Site Tendons Installed To Preset Anchors** Installation Complete


NEW CLASS OF INSTALLATION VESSELS

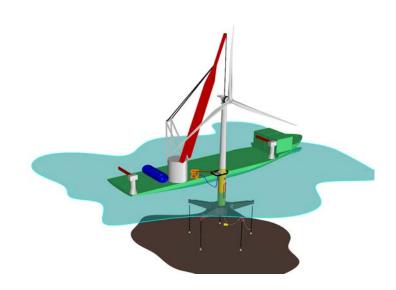
- DEME/GeoSea
 ORION
 - 3,000mt lift at 50m reach
 - 1,500mt lift on aux hook with 800mt heave compensation and 170m hook height
- Designed to transport and install next gen turbines
- Deep water floating lifts with no jack-up legs

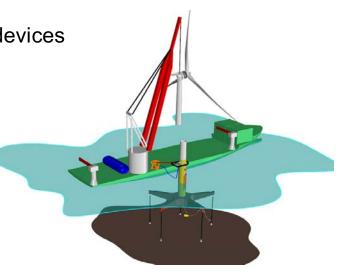
LOADOUT: TURBINE/TOWER AND FOUNDATION

- Tow Foundation from fab yard to assembly site
- Bottom tower segment installed on Foundation with turbine equipment and pre-Commissioned
- Quayside assembly of turbine and blades on upper tower segments
- Orion lifts Turbine Assembly and Foundation onboard
- Transit to Site

INSTALL FOUNDATION

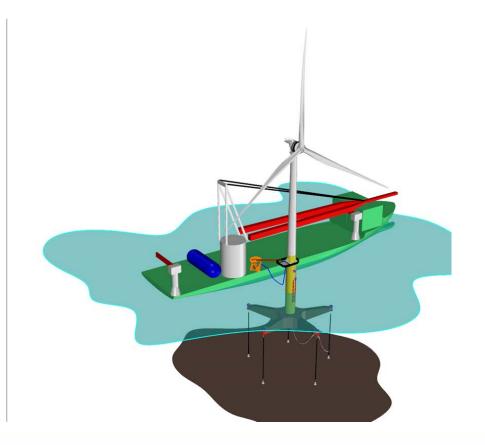
- Foundation ballasted and lowered to tendon installation draft
- Tendons connected
- De-ballasted After Tendons Connected
- Tendon tensions verified
- Crane hook released
- Cleared Safe for boarding




INSTALL TURBINE / UPPER TOWER

• Pick Weight: 700 MT, with Heave Compensation

Secure at Connection Joint with temporary latching devices


Release Crane Hook

COMPLETE INSTALLATION

- Complete permanent connection between the tower and Foundation
- Orion leaves: Estimated time on site:
 ~24hrs
- Final Commissioning and startup completed by wind farm support vessel

PELASTAR: 6 MW, 12MW

	12MW	<u>6MW</u>
Min Water Depth:	100m	60m
Rotor Dia:	220 m	150m
Hub Height abv. LAT	137m	108m
Tower Wt:	1,350mt	450mt
Column Diameter	10.5m	7m

The PelaStar Team:

Bill Hurley

wlhurley@pelastar.com

Ben Ackers

bbackers@glosten.com

Ken FitzGerald

klfitzgerald@glosten.com

