

Wind/Other to Water Power Research

Actual Staff Leveraged

Component and System Characterization and Optimization:
Structural, Drivetrain, Sensors, Instrumentation, Controls, System Integration

Grid: Integration, Power Electronics, Ancillary Services, Fault Response, HIL Microgrid

Technoeconomic Analysis:

LCOE, System Cost Analysis, Power Markets, Jobs, Economic Development Impacts

Modeling and Simulation: CFD, Mooring, Multi-body dynamics, Hydrodynamics, Controls

System Engineering: Offshore Structural Standards, Metocean Design Basis

Deployment / Stakeholder Engagement and Outreach

Ocean

Sub-system Characterization

Levering past DOE investments for multiple industries

Simulation Capability Improvement and Validation through International Collaboration

IEA Wind Task 30

Verification and validation of offshore wind modeling tools (OC3-OC6)

IEA Ocean Energy Systems Task 10

Verification and validation of wave energy converter modeling

- Those developing and using modeling tools involved designers, certifiers, consultants, developers, and researchers
- IEA Ocean Energy Systems Task 10 modeled after IEA Wind Task 30

International Energy Agency (IEA) projects led by NREL/Sandia are verifying and validating the engineering-level tools for offshore wind and wave energy design

Developing the next generation high-fidelity modeling tool

Objective:

- Advance the scientific understanding of the multi-scale flow physics and turbine dynamics of land-based and offshore wind turbines and farms
- Provide the community with a high-fidelity open source simulation capability that can run on "leadership class" supercomputers

Project is a collaboration between the DOE **Office of Science**, the DOE **Wind** Program, NREL, and Sandia.

Project webpage: https://github.com/Exawind/nalu-wind

The team has proposed FY19 work (via the DOE merit review process) to develop floating wind turbine modeling capabilities \rightarrow Opportunity for Wind-MHK collaboration!

The proposed simulation capabilities could be directly used by the MHK industry to:

- Study physics at unprecedented levels of detail
- Model extreme conditions (e.g. ocean storms)
- Improve reduced order design tools (e.g. WEC-Sim)

Sediment Stability and Environmental Risk

SANDIA REPORT

Risk: Harmful interaction between OW sub-structures/cables and the seafloor & unwanted environmental change.

Approach: Use coupled hydrodynamic and sediment transport models to assess spatial patterns of likely erosion, transport, and deposition.

Purpose: Provide tools and guidance to quantify seafloor processes

- Mitigate infrastructure scour risk.
- Retire/mitigate environmental risk

Bed Shear Stress and Velocity Vectors

Site Data (top) vs. Model Prediction (bottom)

NREL/NWTC Wind Energy Research

Wind Plant Focused: 1993-present

Challenging Coupled Systems

Advanced Sensing Wind Plant Flow

Turbine Controls

Improving the performance of wind plants

Transmission and Grid Impacts

NREL/NWTC Water Power Mission

2008-present

"wind"
facilities
and
capabilities

Drivetrain and component research

High fidelity numerical modeling

Characterization in operating conditions

Design tool development

NREL/NWTC Grid Integration Research

2013-present

Rapidly growing portion of research portfolio

 NWTC facilities provide flexible micro-grid capabilities with multi-MW generation and storage with ability to create grid faults isolated from the local utility

Very high level of industry interest

Large-scale hardware rather than pure simulation

NREL/NWTC Manufacturing Research

2015-Present

DOE Request For Information

National Wind Technology Center Facility and Infrastructure Investments

DATE: July 27, 2018

SUBJECT: Request for Information (RFI)

PURPOSE: Addressing the growing Research and Development (R&D) Interest in the use of the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) facilities for renewable energy, energy storage, and grid integration technology development and testing.

Description

NREL's NWTC is poised to provide the integration, data collection, and test support services for a much broader and longer-term vision wherein renewables are a principal electricity provider for the nation. Consequently, the Office of Energy Efficiency and Renewable Energy (EERE) is issuing a Request for Information (RFI) to gain input from industry, academia, research laboratories, government agencies, and other stakeholders regarding infrastructure or equipment investments that would enable expanded energy R&D opportunities at the NWTC. EERE's vision is to enable the transition of the facility from a predominantly wind focus to a broader mix of energy research and development, including energy storage and grid integration.

Thank You