

M3 Wave's APEX Device

Sits on or near the ocean floor Harnesses the pressure wave under a wave or swell Wave pressure compresses air in the system PTO is bi-directional air turbine.

Ocean Renewable Energy Conference September 18-19, 2018

Benefits of Submerged

No impact on ocean view

Surface view, 2014 Deployment

No surface conflicts; Not an impediment to shipping traffic, fishing, recreation

Storm survivability. Safe from wind loads and extreme surface dynamics.

Development Chronology

DMP Gen 1

DMP Gen 2

DMP Gen 3

DMP Gen 4
Ocean Renewable Energy Conference
September 18-19, 2018

Poet PACIFIC OCEAN ENERGY TRUST

Development Chronology (cont)

NEXUS 1:50 NEXUS 1:20

NEXUS: Variant of APEX that is anchored in deep water via Tension Leg Platform

Scour...

Ocean Renewable Energy Conference September 18-19, 2018

Improved Survivability and Lower Cost in a Submerged Wave Energy Device

FOA DE-EE-0001310

NEXT GENERATION MARINE ENERGY SYSTEMS - DURABILITY AND SURVIVABILITY

Brainstorm Sediment Transport Mitigation Concepts

Ocean Renewable Energy Conference September 18-19, 2018

Develop Numerical Models for Sediment Transport

Validate Numerical Models With scale model testing including most promising concepts

How do you validate a sediment transport numerical model?

Improved Survivability and Lower Cost in a **Submerged Wave Energy Device**

FOA DE-EE-0001310

NEXT GENERATION MARINE ENERGY SYSTEMS - DURABILITY AND SURVIVABILITY

Step 1: Build a big basin inside a big flume

Step 2: Fill it with tons of sand

The sand pile can be seen from space!

September 18-19, 2018

How do you validate a sediment transport numerical model?

Improved Survivability and Lower Cost in a Submerged Wave Energy Device

FOA DE-EE-0001310

NEXT GENERATION MARINE ENERGY SYSTEMS - DURABILITY AND SURVIVABILITY

Step 3: Measure sediment using a scanning sonar array

Ocean Renewable Energy Conference September 18-19, 2018

So what's the answer??

Improved Survivability and Lower Cost in a Submerged Wave Energy Device

FOA DE-EE-0001310

NEXT GENERATION MARINE ENERGY SYSTEMS - DURABILITY AND SURVIVABILITY

Numerical models, scale testing, and economic analysis indicated the most viable solutions:

- •Mount off the ocean floor by a slight amount.
- •Minimize cross-sectional area of caisson chambers

Both of these changes tend to allow sediment to "pass through", ebbing and flowing independent of interactions with device structure.

Next Steps

Explore economics of methods for anchoring off the ocean floor.

(some methods have already been tested using numerical models and scale testing)

- ➤ Derive, validate, and publish a methodology for scaling performance attributes of a hybrid air/water system like APEX
- Prototype a new bi-directional turbine (internally funded project)
- Continue developing APEX II with significantly lower CAPEX and reduced deployment asset requirements.

Acknowledgments

Oregon State

ASTORIA.

